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Equivalence of the Ashkin-Teller and the four-state Potts-glass models of neural networks

D. Bollé* ,† and P. Kozłowski† ,‡

Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
~Received 10 April 2001; published 26 November 2001!

We show that for a particular choice of the coupling parameters the Ashkin-Teller spin-glass neural network
model with the Hebb learning rule and one condensed pattern yields the same thermodynamic properties as the
four-state anisotropic Potts-glass neural network model. This equivalence is not seen at the level of the
Hamiltonians.
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It is well known that the classical Ashkin-Teller~AT!
model is a generalization of the Ising, the four-state clo
and the four-state Potts models. This can be easily see
ready at the level of the Hamiltonian, especially when o
rewrites the Hamiltonian of the AT model@1# using two Ising
spins located at each site of the lattice interacting via tw
and four-spin couplings@2#.

For spin-glass systems similar observations can be m
~see Ref.@3# and references therein!. The AT spin-glass
Hamiltonian contains as particular limits, for certain bo
realizations, both the four-state clock spin glass and the f
state Potts-glass Hamiltonians.

Concerning neural network models, the situation is m
complicated. It is straightforward to see at the level of t
Hamiltonian that for two and one of the coupling strengt
respectively, taken to be zero, the AT neural network mo
@4,5# is equivalent to the Hopfield model@6# and the four-
state clock neural network model, respectively,@7#. On the
contrary, the possible relation with the four-state Potts ne
network models existing in the literature@8,9# is, at first
sight, unclear. However, since we discovered in the stud
the thermodynamic and retrieval properties of the AT neu
network@4,5# for equal coupling strengths some resemblan
to the properties of the Potts-glass neural network@8,10#, we
expect that a relation with the latter does exist. To investig
this relation is the purpose of this paper.

The AT neural network with the Hebb learning rule
described by the following infinite-range Hamiltonian:

HAT52
1

2N (
m51

p

(
( i , j )51

N

@J1j i
mj j

msisj1J2h i
mh j

ms is j

1J3j i
mh i

mj j
mh j

msis isjs j #, ~1!

with the two types of Ising neuronssi ,s i ,i 51, . . . ,N de-
scribing the state of the network. In this model storage a
retrieval of the patterns$j i

m%,$h i
m%,m51, . . . ,p are studied.

The patterns are randomly chosen configurations of the
work. Based upon our observations mentioned above we
equal coupling strengthsJ15J25J351 in the sequel.
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Two Potts-glass neural networks with Hebb learning ha
been studied in the literature. Considering four Potts sta
the first network@8# is described by the Hamiltonian

HK52
1

2N (
m51

p

(
( i , j )51

N
1

16
~ui•c i

m!~uj•c j
m!, ~2!

while the second one is given by@9#

HVZ52
1

2N (
m51

p

(
( i , j )51

N
1

16
~ui•uj !~c i

m
•c j

m!, ~3!

whereui andci are state and pattern vectors taken from
set of four-dimensional vectorsv5$v( l )% with components
vk

( l )54dkl21 for l ,k51,2,3,4. The main difference betwee
the two models is that in the first, anisotropic model p
cisely one specific Potts state is favored at each site, whil
the second, isotropic model the fact whether or not two n
rons are in the same state is important.

Two models can be equivalent at the level of the Ham
tonian or at the level of the free energy. It is clear that for t
Hamiltonians of the models we have introduced above th
are one state andp pattern variables associated with each
the N sites of the network. Thus the Hamiltonians can
written in the form

Hmod52
1

2N (
m51

p

(
( i , j )

Hmod~Ci j
m!, ~4!

wheremod denotesAT, K or VZ. The energy of the inter-
action between two sites is a sum over patterns ofHmod(Ci j

m)
and depends on the state-pattern configurationCi j

m of sites i
and j. Hence, it is enough to compare theHmod(Ci j

m). In the
case of four state models we are considering here, all p
sible values ofHmod(Ci j

m) can be written in the form of a
©2001 The American Physical Society02-1
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16316 matrix ~16 state-pattern configurations for a give
site!. For the sake of easy comparison we write down th
matrices explicitly

HK5

¨

9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

3̄ 1 1 1 1 3̄ 1 1 1 1 3̄ 1 1 1 1 3̄

9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9 3̄ 3̄ 3̄ 3̄ 9

©
,

~5!

HVZ5

¨

9 3̄ 3̄ 3̄ 3̄ 1 1 1 3̄ 1 1 1 3̄ 1 1 1

3̄ 9 3̄ 3̄ 1 3̄ 1 1 1 3̄ 1 1 1 3̄ 1 1

3̄ 3̄ 9 3̄ 1 1 3̄ 1 1 1 3̄ 1 1 1 3̄ 1

3̄ 3̄ 3̄ 9 1 1 1 3̄ 1 1 1 3̄ 1 1 1 3̄

3̄ 1 1 1 9 3̄ 3̄ 3̄ 3̄ 1 1 1 3̄ 1 1 1

1 3̄ 1 1 3̄ 9 3̄ 3̄ 1 3̄ 1 1 1 3̄ 1 1

1 1 3̄ 1 3̄ 3̄ 9 3̄ 1 1 3̄ 1 1 1 3̄ 1

1 1 1 3̄ 3̄ 3̄ 3̄ 9 1 1 1 3̄ 1 1 1 3̄

3̄ 1 1 1 3̄ 1 1 1 9 3̄ 3̄ 3̄ 3̄ 1 1 1

1 3̄ 1 1 1 3̄ 1 1 3̄ 9 3̄ 3̄ 1 3̄ 1 1

1 1 3̄ 1 1 1 3̄ 1 3̄ 3̄ 9 3̄ 1 1 3̄ 1

1 1 1 3̄ 1 1 1 3̄ 3̄ 3̄ 3̄ 9 1 1 1 3̄

3̄ 1 1 1 3̄ 1 1 1 3̄ 1 1 1 9 3̄ 3̄ 3̄

1 3̄ 1 1 1 3̄ 1 1 1 3̄ 1 1 3̄ 9 3̄ 3̄

1 1 3̄ 1 1 1 3̄ 1 1 1 3̄ 1 3̄ 3̄ 9 3̄

1 1 1 3̄ 1 1 1 3̄ 1 1 1 3̄ 3̄ 3̄ 3̄ 9

©
,

~6!
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HAT5

¨

3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3

1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄

1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄

1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄

1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄

3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3

1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄

1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄

1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄

1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄

3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3

1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄

1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄

1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄

1̄ 3 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 3 1̄

3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3 1̄ 1̄ 1̄ 1̄ 3

©
,

~7!

where we have used the standard notationc̄52c.
One can see thatHAT differs from HK and HVZ by the

number of energy levels and by their position in the matr
We have not found a transformation of the Hamiltonians
moving this difference. Therefore, we conclude that at
level of the Hamiltonian the AT neural network is not equiv
lent to any of the two four-state Potts models.

In order to find out whether a possible equivalence ex
on the level of the free energies we start from the model w
HamiltonianHK because the matrixHK has the same globa
symmetry asHAT . We note that the symmetry of 434
blocks inHK andHAT is different. It is a consequence of th
fact thatHAT is invariant under inversion of all the spins
while HK is not invariant under any permutation of the sta
variables. The HamiltonianHVZ on the contrary is com-
pletely invariant under any permutation of those variable

As remarked in Ref.@8# HK can be rewritten using two
different types of Ising spins

HK~Ci j
m!5~sij i

m1s ih i
m1sij i

ms ih i
m!

3~sjj j
m1s jh j

m1sjj j
ms jh j

m!. ~8!

Applying the usual replica method@11# to calculate the
quenched average over an arbitrary number of patterns,
sen to be independent identically distributed random v
ables taking the values11 and21 with equal probability,
the free energy density can be written in the thermodyna
limit N→` in the form f 5 limn→05fn /n with fn the rep-
licated free energy. For the model at hand, assuming at
that there is only one pattern condensed, saym51, we get
2-2
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fn,K5
1

2 (
a51

n

ma8
21

9

2
a8b8(

a,b
r ab8 qab8 1

9a8

4b8
Tr ln L

2
1

b8
lnK K (

$s,s%
expH b8(

a
ma8ba

1
9

2
a8b82(

a,b
r ab8 babJ L L , ~9!

where we have dropped the index 1 and where

ba5saj1sah1sasajh,

bab5sasb1sasb1sasasbsb,

Lab5~123b8!dab2b8qab8 , a,b51, . . . ,n.

The bracketŝ ^•••&& indicate the average over the co
densed pattern. As usualb8 is the inverse temperature,a8
the capacity defined as the number of patterns per numb
couplings per spin, i.e.,a852p/9N, ($s,s% denotes the sum
over all configurations at one site and(a,b denotes the sum
over pairs of different replicasa,b. Finally, the set of order
parameters is given by

ma8
m5K K 1

N (
i 51

N

^si
a&j i

m1^s i
a&h i

m1^si
as i

a&j i
mh i

mL L ,

qab8 5K K 1

N (
i 51

N

^si
a&^si

b&1^s i
a&^s i

b&1^si
as i

a&^si
bs i

b&L L ,

r ab8 5
2

9a8
(
m.1

p

^^ma8
mmb8

m&&

where ^•••& denotes the thermal average and the brack
^^•••&& now indicate the average over all patterns.

The order parametersma8 , qab8 , and r ab8 , and the inverse
temperatureb8 can be rescaled in such a way that the res
ing replicated free energy density Eq.~9! satisfiesfn,K
53fn,AT , with fn,AT the replicated free energy density fo
the AT neural network. Hereby we have taken into acco
that for the AT neural network model with equal couplin
strengths and one condensed pattern, the nine order pa
06710
of

ts

t-

t

m-

eters (ma
n ,qab

n ,r ab
n ) with n51,2,3 referring toj, h, andjh

reduce to three, i.e., (ma ,qab ,r ab), where a reference to a
specific type of pattern is now irrelevant. This is due to t
fact that for this AT model only states satisfyingma

n

5ma ,qab
n 5qab ,r ab

n 5r ab ,n51,2,3, i.e., so-called simple
states, minimize the free energy. For the replica symme
anzatz this property of the simple states has been show
Ref. @5# to be related to taking the quenched average o
just one condensed pattern. Since patterns do not carry
lica indices, we assume that it is also valid in the fully re
licated case.

The proper rescaling is the following:

ma853ma , qab8 53qab , r ab8 53r ab ,

b85
1

3
b, a85a. ~10!

Next, assuming more than one condensed pattern, the
der parametersma

n get a vector character inm and stable
states for which thema

n are different for differentn occur.
This no longer allows for a reduction of the order para
eters. We remark that these states have a bigger replica
metric free energy than the one for the simple states a
hence, they play a minor role in the thermodynamics of
model. Nevertheless, they do destroy the thermodyna
equivalence with the Potts model.

In brief, we conclude that the AT neural network wit
equal coupling strengths and one condensed pattern is
modynamically equivalent to the four-state anisotropic Po
model studied in Ref.@8#, in spite of the different Hamilto-
nians. In fact, the AT Hamiltonian~1! does not contain three
spin interaction terms present in Eq.~8!. We have demon-
strated this thermodynamic equivalence by rewriting
Hamiltonian of the Potts model using two different types
Ising variables and calculating the replicated free energy

These results clarify the resemblance found bef
@4,5,12# of the thermodynamic properties of the AT and t
Potts neural networks. Furthermore, they imply that the fo
state Potts model described byHVZ is thermodynamically
equivalent to the AT neural network model with one co
densed pattern only in the limit of low loading, i.e., fora
50, or at zero temperature assuming replica symme
where we know that the fixed-point equations for the tw
four-state Potts models are the same, as shown in Ref.@9#.
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